Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 20(4): e1012124, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635841

RESUMO

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments.

2.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645846

RESUMO

Staphylococcus saprophyticus is a Gram-positive, coagulase-negative staphylococcus found in diverse environments including soil and freshwater, meat, and dairy foods. S. saprophyticus is also an important cause of urinary tract infections (UTIs) in humans, and mastitis in cattle. However, the genetic determinants of virulence have not yet been identified, and it remains unclear whether there are distinct sub-populations adapted to human and animal hosts. Using a diverse sample of S. saprophyticus isolates from food, animals, environmental sources, and human infections, we characterized the population structure and diversity of global populations of S. saprophyticus . We found that divergence of the two major clades of S. saprophyticus is likely facilitated by barriers to horizontal gene transfer (HGT) and differences in metabolism. Using genome-wide association study (GWAS) tools we identified the first Type VII secretion system (T7SS) described in S. saprophyticus and its association with bovine mastitis. Finally, we found that in general, strains of S. saprophyticus from different niches are genetically similar with the exception of built environments, which function as a 'sink' for S. saprophyticus populations. This work increases our understanding of the ecology of S. saprophyticus and of the genomics of bacterial generalists. Data summary: Raw sequencing data for newly sequenced S. saprophyticus isolates have been deposited to the NCBI SRA under the project accession PRJNA928770. A list of all genomes used in this work and their associated metadata are available in the supplementary material. Custom scripts used in the comparative genomics and GWAS analyses are available here: https://github.com/myoungblom/sapro_genomics . Impact statement: It is not known whether human and cattle diseases caused by S. saprophyticus represent spillover events from a generalist adapted to survive in a range of environments, or whether the capacity to cause disease represents a specific adaptation. Seasonal cycles of S. saprophyticus UTIs and molecular epidemiological evidence suggest that these infections may be environmentally-acquired rather than via transmission from person to person. Using comparative genomics and genome wide association study tools, we found that S. saprophyticus appears adapted to inhabit a wide range of environments (generalist), with isolates from animals, food, natural environments and human infections being closely related. Bacteria that routinely switch environments, particularly between humans and animals, are of particular concern when it comes to the spread of antibiotic resistance from farm environments into human populations. This work provides a framework for comparative genomic analyses of bacterial generalists and furthers our understanding of how bacterial populations move between humans, animals, and the environment.

4.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503306

RESUMO

Mycobacterium tuberculosis ( M. tb ), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments. Importance: Understanding mechanisms of resistance and tolerance in Mycobacterium tuberculosis ( M. tb ) can help us develop new treatments that capitalize on M. tb 's vulnerabilities. Here we used transcriptomics to study both the regulation of biofilm formation in clinical isolates as well as how those regulatory systems adapt to new environments. We find that closely related clinical populations have diverse strategies for growth under biofilm conditions, and that genetic background plays a large role in determining the trajectory of evolution. These results have implications for future treatment strategies that may be informed by our knowledge of the evolutionary constraints on strain(s) from an individual infection. This work provides new information about the mechanisms of biofilm formation in M. tb and outlines a framework for population level approaches for studying bacterial adaptation.

5.
Nat Commun ; 14(1): 4130, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438331

RESUMO

Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.


Assuntos
Clostridioides difficile , Nitroimidazóis , Metronidazol/farmacologia , Clostridioides difficile/genética , Fluoroquinolonas/farmacologia , Nitroimidazóis/farmacologia , Clostridioides , Heme , Pandemias
6.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37213168

RESUMO

The incidence of gonorrhoea is increasing at an alarming pace, and therapeutic options continue to narrow as a result of worsening drug resistance. Neisseria gonorrhoeae is naturally competent, allowing the organism to adapt rapidly to selection pressures including antibiotics. A sub-population of N. gonorrhoeae carries the Gonococcal Genetic Island (GGI), which encodes a type IV secretion system (T4SS) that secretes chromosomal DNA. Previous research has shown that the GGI increases transformation efficiency in vitro, but the extent to which it contributes to horizontal gene transfer (HGT) during infection is unknown. Here we analysed genomic data from clinical isolates of N. gonorrhoeae to better characterize GGI+ and GGI- sub-populations and to delineate patterns of variation at the locus itself. We found the element segregating at an intermediate frequency (61%), and it appears to act as a mobile genetic element with examples of gain, loss, exchange and intra-locus recombination within our sample. We further found evidence suggesting that GGI+ and GGI- sub-populations preferentially inhabit distinct niches with different opportunities for HGT. Previously, GGI+ isolates were reported to be associated with more severe clinical infections, and our results suggest this could be related to metal-ion trafficking and biofilm formation. The co-segregation of GGI+ and GGI- isolates despite mobility of the element suggests that both niches inhabited by N. gonorrhoeae remain important to its overall persistence as has been demonstrated previously for cervical- and urethral-adapted sub-populations. These data emphasize the complex population structure of N. gonorrhoeae and its capacity to adapt to diverse niches.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , DNA , Sistemas de Secreção Tipo IV/genética , Genômica
7.
mSphere ; 7(6): e0050922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321824

RESUMO

The viridans group streptococci (VGS) are a large consortium of commensal streptococci that colonize the human body. Many species within this group are opportunistic pathogens causing bacteremia and infective endocarditis (IE), yet little is known about why some strains cause invasive disease. Identification of virulence determinants is complicated by the difficulty of distinguishing between the closely related species of this group. Here, we analyzed genomic data from VGS that were isolated from blood cultures in patients with invasive infections and oral swabs of healthy volunteers and then determined the best-performing methods for species identification. Using whole-genome sequence data, we characterized the population structure of a diverse sample of Streptococcus oralis isolates and found evidence of frequent recombination. We used multiple genome-wide association study tools to identify candidate determinants of invasiveness. These tools gave consistent results, leading to the discovery of a single synonymous single nucleotide polymorphism (SNP) that was significantly associated with invasiveness. This SNP was within a previously undescribed gene that was conserved across the majority of VGS species. Using the growth in the presence of human serum and a simulated infective endocarditis vegetation model, we were unable to identify a phenotype for the enriched allele in laboratory assays, suggesting a phenotype may be specific to natural infection. These data highlighted the power of analyzing natural populations for gaining insight into pathogenicity, particularly for organisms with complex population structures like the VGS. IMPORTANCE The viridians group streptococci (VGS) are a large collection of closely related commensal streptococci, with many being opportunistic pathogens causing invasive diseases, such as bacteremia and infective endocarditis. Little is known about virulence determinants in these species, and there is a distinct lack of genomic information available for the VGS. In this study, we collected VGS isolates from invasive infections and healthy volunteers and performed whole-genome sequencing for a suite of downstream analyses. We focused on a diverse sample of Streptococcus oralis genomes and identified high rates of recombination in the population as well as a single genome variant highly enriched in invasive isolates. The variant lies within a previously uncharacterized gene, nrdM, which shared homology with the anaerobic ribonucleoside triphosphate reductase, nrdD, and was highly conserved among VGS. This work increased our knowledge of VGS genomics and indicated that differences in virulence potential among S. oralis isolates were, at least in part, genetically determined.


Assuntos
Bacteriemia , Endocardite , Humanos , Streptococcus oralis/genética , Estudo de Associação Genômica Ampla , Streptococcus/genética , Estreptococos Viridans/genética , Genômica , Fatores de Virulência/genética
8.
Cell ; 185(24): 4467-4469, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36423577

RESUMO

In this issue of Cell, Saelens et al. describe a new function for mycobacterial Type VII secretion systems: manipulation of host cell migration. They find that a substantial proportion of global TB cases arise from bacteria lacking this function, raising questions about its role in pathoadaptation of Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Humanos , Sistemas de Secreção Tipo VII/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Movimento Celular
9.
Annu Rev Microbiol ; 76: 661-680, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709500

RESUMO

Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Evolução Molecular , Transferência Genética Horizontal , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Virulência/genética , Fatores de Virulência/genética
10.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35726854

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a leading cause of death due to infectious disease. TB is not traditionally associated with biofilms, but M. tb biofilms are linked with drug and immune tolerance and there is increasing recognition of their contribution to the recalcitrance of TB infections. Here, we used M. tb experimental evolution to investigate this complex phenotype and identify candidate loci controlling biofilm formation. We identified novel candidate loci, adding to our understanding of the genetic architecture underlying M. tb biofilm development. Under selective pressure to grow as a biofilm, regulatory mutations rapidly swept to fixation and were associated with changes in multiple traits, including extracellular matrix production, cell size, and growth rate. Genetic and phenotypic paths to enhanced biofilm growth varied according to the genetic background of the parent strain, suggesting that epistatic interactions are important in M. tb adaptation to changing environments.


In many environments, bacteria live together in structures called biofilms. Cells in biofilms coordinate with each other to protect the group and allow it to survive difficult conditions. Mycobacterium tuberculosis, the bacterium that causes tuberculosis, forms biofilms when it infects the human body. Biofilms make the infection a lot more difficult to treat, which may be one of the reasons why tuberculosis is the deadliest bacterial infection in the world. Bacteria evolve rapidly over the course of a single infection, but bacteria forming biofilms evolve differently to bacteria living alone. This evolution happens through mutations to the bacterial DNA, which can be small (a single base in a DNA sequence changes to a different base) or larger changes (such as the deletion or insertion of several bases). Smith, Youngblom et al. studied the evolution of tuberculosis growing in biofilms in the lab. As the bacteria evolved, they tended to form thicker biofilms, an effect linked to 14 mutations involving single base DNA changes and four larger ones. Most of the changes were in regulatory regions of DNA, which control whether genes are 'read' by cells to produce proteins. These regions often change more though evolution than regions coding for proteins, because they have a coordinated effect on a group of related genes rather than randomly altering individual genes. Smith, Youngblom et al. also showed that biofilms made from different strains of tuberculosis evolved in different ways. Smith Youngblom et al.'s findings provide more information regarding how bacteria adapt to living in biofilms, which may reveal new ways to control them. This could have applications in water treatment, food production and healthcare. Learning how to treat bacteria growing in biofilms could also improve the outcomes for patients infected with tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Biofilmes , Humanos , Herança Multifatorial , Mycobacterium tuberculosis/genética , Tuberculose/genética , Tuberculose/microbiologia
11.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34874249

RESUMO

Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.


Assuntos
Cromossomos Bacterianos/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/classificação , Plasmídeos/genética , Prófagos/genética , Sequenciamento Completo do Genoma/métodos , Adaptação Fisiológica , Austrália , Bases de Dados Genéticas , Dinamarca , Transferência Genética Horizontal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação , Países Baixos , Noruega , Filogenia , Filogeografia , Recombinação Genética , Reino Unido
12.
Infect Immun ; 89(12): e0051921, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34581604

RESUMO

The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.


Assuntos
Regulação Bacteriana da Expressão Gênica , Gonorreia/microbiologia , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/fisiologia , Sistemas de Secreção Tipo IV , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Gonorreia/metabolismo , Humanos , Ferro/metabolismo , Zinco/metabolismo
13.
Med Decis Making ; 41(6): 641-652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33904344

RESUMO

OBJECTIVE: A recent study reported a tuberculosis (TB) outbreak in which, among newly infected individuals, exposure to additional active infections was associated with a higher probability of developing active disease. Referred to as complex contagion, multiple reexposures to TB within a short period after initial infection is hypothesized to confer a greater likelihood of developing active infection in 1 y. The purpose of this article is to develop and validate an agent-based simulation model (ABM) to study the effect of complex contagion on population-level TB transmission dynamics. METHODS: We built an ABM of a TB epidemic using data from a series of outbreaks recorded in the 20th century in Saskatchewan, Canada. We fit 3 dynamical schemes: base, with no complex contagion; additive, in which each reexposure confers an independent risk of activated infection; and threshold, in which a small number of reexposures confers a low risk and a high number of reexposures confers a high risk of activation. RESULTS: We find that the base model fits the mortality and incidence output targets best, followed by the threshold and then the additive models. The threshold model fits the incidence better than the base model does but overestimates mortality. All 3 models produce qualitatively realistic epidemic curves. CONCLUSION: We find that complex contagion qualitatively changes the trajectory of a TB epidemic, although data from a high-incidence setting are reproduced better with the base model. Results from this model demonstrate the feasibility of using ABM to capture nuances in TB transmission.


Assuntos
Tuberculose , Simulação por Computador , Surtos de Doenças , Humanos , Incidência , Análise de Sistemas , Tuberculose/epidemiologia
14.
Nat Commun ; 11(1): 5558, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144575

RESUMO

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties following the statewide "Safer at Home" order, which went into effect 25 March 2020. Our results suggest patterns of SARS-CoV-2 transmission may vary substantially even in nearby communities. Understanding these local patterns will enable better targeting of public health interventions.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral/genética , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Infecções por Coronavirus/prevenção & controle , Geografia , Humanos , Programas de Rastreamento/métodos , Epidemiologia Molecular/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Distância Psicológica , Dispositivos de Proteção Respiratória , SARS-CoV-2 , Estados Unidos/epidemiologia , Wisconsin/epidemiologia
15.
BMC Infect Dis ; 20(1): 831, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176701

RESUMO

BACKGROUND: The discovery of antibiotics in the mid-twentieth century marked a major transition in tuberculosis (TB) treatment and control. There are few studies describing the duration of TB disease and its treatment from the pre-chemotherapy era and little data on how these treatments changed in response to the development of effective antibiotics. The goal of this research is to understand how inpatient treatment for high incidence populations, the First Nations peoples of Saskatchewan, Canada, changed in response to increasing availability of antibiotics effective against TB. We expected that as treatment regimens transitioned from convalescence-only to triple antibiotic therapy, the length of inpatient treatment would shorten. METHODS: Analyses were performed on records of sanatoria admissions and discharges occurring between 1933 and 1959 in Saskatchewan, Canada. Year of antibiotic discovery was taken as a proxy for treatment regimen: no chemotherapy (pre-1944), mono-therapy (Streptomycin, 1944-1946), dual-therapy (Streptomycin and PAS, 1946-1952), and triple-therapy (Streptomycin, PAS, and INH 1952-). A pooled linear regression of log-transformed length of first admission as predicted by year of admission was modeled to assess the relationship between admission length and year of admission, corrected for clinical and demographic variables. RESULTS: First admission length increased 19% in the triple-therapy era as compared to the pre-chemotherapy era, from 316 days (10.4 months) to 377 days (12.4 months). After the discovery of INH (1952), we find statistically significant increases in the proportion of successfully completed therapies (0.55 versus 0.60, p = 0.035), but also in patients who left hospital against medical advice (0.19 versus 0.29, p < 0.0001), indicating that as hospitalizations lengthened, more patients chose to discharge without the sanction of their physician. The readmission rate increased from 10 to 50% of all admissions while the province-level TB-specific death rate fell from 63.1 per 10,000 in 1933 to 4.7 per 10,000 in 1958. CONCLUSION: Counterintuitively, we find that the length of first admissions increased with the discovery of TB-treating antibiotics. Increasing admission volume and readmission rate indicate an intensification of inpatient TB treatment during this era. These analyses provide a novel estimate of the effect of changing treatment policy on sanatorium admissions in this population.


Assuntos
Antibacterianos/uso terapêutico , Tempo de Internação/tendências , Readmissão do Paciente/tendências , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Canadá/epidemiologia , Criança , Pré-Escolar , Feminino , Hospitais , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Estudos Retrospectivos , Resultado do Tratamento , Tuberculose/microbiologia , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-32656099

RESUMO

Gardnerella spp. are pathognomonic for bacterial vaginosis, which increases the risk of preterm birth and the transmission of sexually transmitted infections. Gardnerella spp. are genetically diverse, comprising what have recently been defined as distinct species with differing functional capacities. Disease associations with Gardnerella spp. are not straightforward: patients with BV are usually infected with multiple species, and Gardnerella spp. are also found in the vaginal microbiome of healthy women. Genome comparisons of Gardnerella spp. show evidence of lateral gene transfer (LGT), but patterns of LGT have not been characterized in detail. Here we sought to define the role of LGT in shaping the genetic structure of Gardnerella spp. We analyzed whole genome sequencing data for 106 Gardnerella strains and used these data for pan genome analysis and to characterize LGT in the core and accessory genomes, over recent and remote timescales. In our diverse sample of Gardnerella strains, we found that both the core and accessory genomes are clearly differentiated in accordance with newly defined species designations. We identified putative competence and pilus assembly genes across most species; we also found them to be differentiated between species. Competence machinery has diverged in parallel with the core genome, with selection against deleterious mutations as a predominant influence on their evolution. By contrast, the virulence factor vaginolysin, which encodes a toxin, appears to be readily exchanged among species. We identified five distinct prophage clusters in Gardnerella genomes, two of which appear to be exchanged between Gardnerella species. Differences among species are apparent in their patterns of LGT, including their exchange with diverse gene pools. Despite frequent LGT and co-localization in the same niche, our results show that Gardnerella spp. are clearly genetically differentiated and yet capable of exchanging specific genetic material. This likely reflects complex interactions within bacterial communities associated with the vaginal microbiome. Our results provide insight into how such interactions evolve and are maintained, allowing these multi-species communities to colonize and invade human tissues and adapt to antibiotics and other stressors.


Assuntos
Microbiota , Nascimento Prematuro , Vaginose Bacteriana , Feminino , Gardnerella , Transferência Genética Horizontal , Humanos , Recém-Nascido , Microbiota/genética , Gravidez
17.
medRxiv ; 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32676620

RESUMO

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide Safer-at-Home public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

18.
Hum Mol Genet ; 29(5): 736-744, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31841129

RESUMO

Selective pressures imposed by pathogens have varied among human populations throughout their evolution, leading to marked inter-population differences at some genes mediating susceptibility to infectious and immune-related diseases. Here, we investigated the evolutionary history of a common polymorphism resulting in a Y529 versus C529 change in the cadherin related family member 3 (CDHR3) receptor which underlies variable susceptibility to rhinovirus-C infection and is associated with severe childhood asthma. The protective variant is the derived allele and is found at high frequency worldwide (69-95%). We detected genome-wide significant signatures of natural selection consistent with a rapid increase of the haplotypes carrying the allele, suggesting that non-neutral processes have acted on this locus across all human populations. However, the allele has not fixed in any population despite multiple lines of evidence suggesting that the mutation predates human migrations out of Africa. Using an approximate Bayesian computation method, we estimate the age of the mutation while explicitly accounting for past demography and positive or frequency-dependent balancing selection. Our analyses indicate a single emergence of the mutation in anatomically modern humans ~150 000 years ago and indicate that balancing selection has maintained the beneficial allele at high equilibrium frequencies worldwide. Apart from the well-known cases of the MHC and ABO genes, this study provides the first evidence that negative frequency-dependent selection plausibly acted on a human disease susceptibility locus, a form of balancing selection compatible with typical transmission dynamics of communicable respiratory viruses that might exploit CDHR3.


Assuntos
Asma/patologia , Caderinas/genética , Enterovirus/fisiologia , Predisposição Genética para Doença , Haplótipos , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Asma/etiologia , Asma/história , Teorema de Bayes , Proteínas Relacionadas a Caderinas , Criança , Genoma Humano , História Antiga , Humanos
19.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213563

RESUMO

Genetic differences are hypothesized to underlie ethnic disparities in incidence rates of the endemic systemic mycoses, including blastomycosis. Individuals of Hmong ancestry display elevated risk for this serious fungal infection. Here, we interrogated the genomes of Wisconsin (WI) Hmong blastomycosis patients using homozygosity mapping to uncover regions of the genome that are likely shared among the greater Hmong population and filtered for variants with high potential to affect disease susceptibility. This approach uncovered 113 candidate susceptibility variants, and among the most promising are those in genes involved in the interleukin-17 (IL-17) response. In particular, we identified 25 linked variants near the gene encoding IL-6 (IL6). We validated differences in cytokine production between Hmong and European volunteers and formally demonstrated a critical role for IL-6 in the development of adaptive immunity to Blastomyces dermatitidis Our findings suggest that the dysregulation of IL-17 responses underlies a recently reported and poorly understood ethnic health disparity.IMPORTANCE Blastomycosis is a potentially life-threatening infection caused by the fungus Blastomyces dermatitidis As with related fungal diseases, blastomycosis is noted to affect some populations more than others. These patterns of illness are often not related to predisposing conditions or exposure risks; thus, genetic differences are thought to underlie these health disparities. People of Hmong ancestry in Wisconsin are at elevated risk of blastomycosis compared to the general population. We studied the genetic codes of Hmong blastomycosis patients and identified candidate sites in their genomes that may explain their susceptibility to this infection. We further studied one particular region of the genome that is involved with the immune processes that fight B. dermatitidis Our work revealed population differences in the response to fungi. A better understanding of the genetic underpinnings of susceptibility to infectious diseases has broader implications for community health, especially in the paradigm of personalized medicine.


Assuntos
Blastomyces/imunologia , Blastomicose/genética , Blastomicose/imunologia , Predisposição Genética para Doença , Interleucina-6/genética , Animais , Blastomicose/etnologia , Etnicidade , Feminino , Humanos , Imunidade Celular , Fenômenos Imunogenéticos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Saliva/microbiologia , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Sequenciamento Completo do Genoma , Wisconsin
20.
Front Genet ; 10: 477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214242

RESUMO

Mycobacterium tuberculosis (M. tb), an obligate human pathogen and the etiological agent of tuberculosis (TB), remains a major threat to global public health. Comparative genomics has been invaluable for monitoring the emergence and spread of TB and for gaining insight into adaptation of M. tb. Most genomic studies of M. tb are based on single bacterial isolates that have been cultured for several weeks in vitro. However, in its natural human host, M. tb comprises complex, in some cases massive bacterial populations that diversify over the course of infection and cannot be wholly represented by a single genome. Recently, enrichment via hybridization capture has been used as a rapid diagnostic tool for TB, circumventing culturing protocols and enabling the recovery of M. tb genomes directly from sputum. This method has further applicability to the study of M. tb adaptation, as it enables a higher resolution and more direct analysis of M. tb genetic diversity within hosts with TB. Here we analyzed genomic material from M. tb and Mycobacterium bovis populations captured directly from sputum and from cultured samples using metagenomic and Pool-Seq approaches. We identified effects of sampling, patient, and sample type on bacterial genetic diversity. Bacterial genetic diversity was more variable and on average higher in sputum than in culture samples, suggesting that manipulation in the laboratory reshapes the bacterial population. Using outlier analyses, we identified candidate bacterial genetic loci mediating adaptation to these distinct environments. The study of M. tb in its natural human host is a powerful tool for illuminating host pathogen interactions and understanding the bacterial genetic underpinnings of virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...